

SE 043769
Professional Opportunfties in the Mathematical
Sciences Eleventh Edition. A Report for . Undergraduate Students of Mathematics.

INSTITUTION

PUB DATE
NOTE
AVAILABLE FROM

PUB TYPE
EDRS PRICE. DESCRIPTORS

IDENTIFIERS:

ABSTRACT

D. 'C'。

83
42 p .
Mathematical Association of America, 1529 18th. St., N.W., Washington, DC 20036 ($\$ 1.95$ each, 5 or more \$0.95 each). Guides Gelneral' (050) -- Reports. - General (140)
MEOí plus Postage. PC Not Avaílable from EDRS. *Career Cholde; *College Mathematics; *Employment Opportunitiés; Higher Education; Mathematical Applications; *Mathematicians; *Occupations; Professional Personnel; Secondary Education.; Secondary School Måthematics; *Undergraduate Students
Mathematical Association Of America; *Mathematical Sciences

This repert is intended to give an indication af the variety of careers availale to persons with interest and preparation in the mathematical/sciendes. Each part focusés on a particular class: of professions, with necessary training as well as the character of the work and geńeral conditions of employment described. Parts. through V deal with five areas in which the application of mathematics plays major role: applied mathematics and engineering, computer science, operations/research; statistics, and the actuarial professions. Part VI deals with applications of mathematics to model building in other discipiines such as social sciences and biology. Parts VII and VIII are organized around the type of employer, with the first devoted to the teaching of mathematics at all lejvels and the second discussing the role of the mathematician in government, business, and industry. Part IX describes the value of an undergraduate dégree in mathemetics as preparation for a number of other professions not necessarily thought of as mathematical, such as business or law. In Part X, a list of references to publications and professiónal societies is given. (MNS)

Reproductions supplied by EDRS are the best that can be made

Professional Opportunities

 in the Mathematical Sciences

PROFESSIONAL OPPORTUNITIESIN THE MATHEMATICAL SCIENCESA.Report for Undergraduate Students of Mathematics
INTRODUCTION 5
PART $1:$:. Opportunities in Glassical Applied Mathematies and Engineering 7

1. Education for Applied Mathematics 7
"i. 2. Working as an Applied Mathematician 7
PART II: Opportunities in Computer Science 9
1.: Mathematics and Computer Science 9
2. Working as a Computer Scientist 10 .PPART III: Opportunities in Operations Research12
1.wMathematics in Operations Research 13
3. Working as an Operations Researcher 14
PART IV: Opportunities in Statistics. 16
4. Education for Statistics 16
5. Working as a Statistician 17
${ }^{7}$
PART V: Opportunities in the Actuarial Profession. 18
6. Education and Examinations 18
7. Working às an Actüary 19
PART VI: 'Professional Opportunities in Interdisciplinary Areas 21
8. Müthemătics in Interdisciplinary Areas $\ldots \because . .$. 21
9. Education for Interdisciplinary Reseapch 23
10. Employment in Interdisciplinary Areas 23
PART VII: Teaçhing Mathematics 24
11. Teaching in an Elementary or Secondary School 25
12. Teaching in a Junior or Community College 26
13. Teaching in a College or Universify 27
"ThRT VIII: The Mathematician in Government, Business, and Industry*. 29

- \quad 1. Working as artahematician in Government, Business, and Industry 29

2. Working Conditions and Emploỳment Opportunities in Business 32
and Industry
and Industry
3. Working Conditions andernployment Opportunities in Government: 3
PART IX: : Mathematics as a Background for Other Professions 37 37
4. Cáreérs Requiring Nó Gfaduate Training
5. Cáreérs Requiring Nó Gfaduate Training $?$ 2. Gf́aduate and Professional School Opportunitles 37
PART X: References

- INTRODUCTION

This report is designed for students in secondary school or collegè, and their counselers or faculty advisors. It is iftended to give an indication of "the variety of careers available to persons with interest and preparation in the mathematical sciences. The report is written in several parts, each

- focusing on a particular class of professions, and describing the necessary training as well as the character of the work and general conditions of employment. As is the case with any committe report it is subject to the authors'. personal biases concerning the present and future employment situation for mathematicians.

Parts I thrgigh V deeal with five areas in which the application of mathematics plays a major role. Part I is devoted to the most traditional areas to which mathematics has begen applied: physics and engineering. Part II describes the role of mathematics in computer science; the natyre of the problems addressed, and the kinds of employment a mathematician 'might seek; Parts III and IV describe Operations Research and Statistics in a similar way.: Part V?discusses the field of Actuarial Science, a profession of long standing dealing primarily with problems' related to pensions 'and insurance. Part VI deals with the application of mathematics to model building in oother disciplines such as sọcial sciences and biology. Parts VII and VIII are organized around the type of employer, and encompass a wide variety of mathematical specialties. Part VII is devoted to the teaching of mathematics at all levels, and Part VIII discusses the role of the mathematician in government, business, and industry. Part IX -fócuses upon the value of an undergraduate degree in mathematics as preparation for a number of careers not necessarily thought of as mathematical, such as business or law. Part X gives a list of references to publications and professional societies.
\because Changing times hate dictated changes in the focus and emphasis of "Professional Opportunities in the Mathematical"Sciences.". The 1960's saw a remarkable increase in the recognition of the importante of mathematics in all areas of society and in the need for trained mathematicians-at all levels. This trend has not been reversed, but it has been modified. Mathematical thinkirg and techniques of mathematical analysis are, if anything, more important than ever before in an increasing number of professional areas. While employment opportunities for teachers and fesearchers in pure mathematics declined in the 1970's relative to the supply, "the need for well-trained people who could apply mathematical methods and ideas remained strong. The latter situation, at least, seems likely to continue. The tenth edition (1978) of this publication contained the new séction "'Opportunities in Interdisciplinary Areas," which is still highly relevant, and to this, the eleventh edition, we have added Part IX, "Mathematics as a Background for Other Professions."

It is important to stress the value of tudergiaduate training in mathematics, whether or not the student anticipates going on for a graduate degree in the mathematical sciences. As is pointed out in Part IX, a bachelor's degree in mathematies can provide entry to jobs in manage-

* ment, engineering aind geology, and to graduate schools in business, law and Government, amoing others. There are also good opportunitief for ore seeking many of the pore directly mathe mican mentioned in this report, particularly if they have taken some courses in compuifer sciences" and statistics. In a number of fields a master's degrecaxepresents adequate formal education. Sometimes when higher degrees are required for advancement there are opportunities to undertake further schooling while on the job. Of course, the amount of formal education necessary depends upon the job For college"and university teaching and for basic indistrial research a Ph.D. is usually a requirement.
Several variables affect job opportunities for people trained in mathematics; regional differences and the relative economic position of private andpublic activities aro among them. But in general the prospects at this time are very goad for those with some flexibility. Women, Blacks, and Hispanic-Americans, who are underrepresented in the field, should be encouraged to pursiè their talents and interests in mathematics. While the percentage of women in mathematical professions has grown, it is still $\ddot{v e r y}$ small. The percentage of thic minority groups mentioned above is smaller still. Additional efforts are required to direct the aspirations of these groups into the mathematical sciences. Some publications intended for women are cited in Part X, the list of references.
, This report is prepared by the Committee on Advisement and Personnel of the Mathematical Association of America. The members" of the Committec who contributed to this edition were Bernice Auslander, University of Massachusetts/Boston (chairperson and editor); Janc Day, San Jose University; Gordon Raisbeck, Arthur D. Little, Inc.; Martha Smith and James Vick, both of thé University of Texas (Austin). The
- Committec owes a debt of gratitude to Alfred Willcox and the staff of the
- Mathẹmatical Association of America and to the following members of
- the mathematical community, who also made contributions to the report: Linda Kime, University of Massachusetts/Boston; John E. 'O'Connor,
\because Socicty of Actuaries; Richard D. Truésdell, University of Massachusetts/ Boston; Hepry Alder, University of Californiał, Davis.

PART I: OPPOURTUNITHELIN,CLASSICAL APPLILID MATIIEMATICS AND.ENGINEDIRING

The most traditional role of the mathematien in a professional setting has been in the solution of problems arising from pliysieal phenomatha: From its very ineention, calculus has been applied to laws of motion and to moderstanding the consequenees of interacting forecs. While the early applied mathematicians were neeessarily 4 pliysicists and engineers as well, the modegn setting ealls for the mathematician to serve as a pentiber of a team of specialists, each bringing a particular talent to bear on problems..

In a broad sense, the applied mathematician is instrumental in designing and analyzing models of systems and in testing and evaluating performance. It is a characteristic of this fiek that the teelnical questions readily move across one clearly distinguished boundaries. Whether in researeh and development or in industrial production, the applied mathonatician must interact with engineers, physicists, programmers, and other specialists. The common goal is to find ways to 'improve quality, reduce cost, and inerease productivity. The analytical skills , of theimathenatician are particularly valuable in consulting, for technical servies or trouble shooting.

Recent mathematical researeh' in combination with increasing computer a sophistication kas opened fields that saw little developthent in the past due to their' intractability to elassieal malytie tecliniques. These inelade the solution of problems involving enormous numbers of equations, the numerical simulation of complex.systems such as power grids, and the application of control theory and other mathematical tools to the management of traffic or industrial processes.

- 1. Education for Applied Mathematics. Preparation for a career in applied mathematics is discussed in the report from the MAA Committee on the Under"graduate Program in Matlíematics (CUPM) entitled "Recommendations for a General Mathematical Sciences Programi." The need should, be stressed for a thorough background in calculus, linear algebra, ordinary and partial differential equations, probability, statistics, and advanced calculus. These courses should inctudé sổne extensive ouse of, computing, or they should be supplemented by approprifte coursegin comiputer sciences.
Supportint work should include physics and basic engineering courses. Speciffe professional opportinities may require additional training in chemistry, bioflogy, or geologys It is particularly the case in some research programs that preparation at ädvanced degrec levels in gpplied mathematics is necessary.
刁... - Since the applied mathematician will often work as part of a team, communication skills are essential. The educational background must develop the ability to write clearly and effectively and to present logical and persuasive pral arguments.

2. Working as aǹ Applied Mathematician. The tasks of the applied mathematician are, as' diverse as the.,constituenciess' served. The broad category of engineering disciplines is a rich source of mathematical problems. In the aero-k.

namtical fieded a mathenaticiam may hedprto develop models for atyoosplicric flight including the amalysis of performance in search of optimat: trijectorics. Dioomedical engincers may rely on mathematicians when designitig and interpreting theoretical medels of chemical and biological processes. A meclamical chgineer may recpuire a study of heat transfer by conduction, convection, andradiation resulting from a gas turbine.

- Many problems involve scientifici or engincering 'data'and the use of computer techlmiques to answer guestions arising in researell, plamt operations, product disitribution systems, inventory controls, and business system analyses, Mathematicians seek efficient and reliable computer programs for the mimerical solution of initial value problens or special function routines capable of delivering accurate answers over a wide range of'paramegters. While the methods most frequently applied are based in ordinary and partial differential equations, there is an increasing involvement with probability, statistics, and computing.

According to the College Placement,Council; in the Sprfag of 1982 the average starting salaity for a mathematics major with a bachelor's degree was $\$ 21,100$. The cofresponding average starting salary, was $\$ 25,300$ for holders of master's degreas.

partíl: oppobtunitils in computhriscience

- Until a filv years atter World War II, very" few persons were employed as . mathematiciams in, non-teiching positions. Now many mathematicians receiving the Plo.I). degree and the majority of those with master's or bachelor's depreest. atecept jobs in industry or government. Most of these jobs have been created by the phenemenal growth in the use of computer tectpology. A recent U.S. Departmehtit of Labor jublication (13nfetin 2075) indicates that in 1.978 about 430,0(0) people worked as computer programmers or systems analysts: The demand for computer scientists exceeds supply, especially for individuals with work experienceror higher degrees. In 1980 there were 3,597 minter's and a anere 239 Plo.D.'s awarded in computer science (National Center for Education Statistics, Earned Degress Conferred, Ammal Series). ${ }^{\circ}$
- . Computer science is unigue in some respects. It grew out of the union of science and enginecring and fofms a bridge between the two. The nation's univer-' sities reflect this dual nature. Soure plate computer sciencë in engineéring departments and others, in 'science or mathematics departments. Many universities have now ereated separate departments of computer science.
- There are many professional organizations whose menberrs deal with the use and applications of computer science. The two major onies are the Association for Computing Machinery and the Socicty for Indistrial and Applied Mathematics. For additional mames consult the American Federation of Information Processing Socictics. 〈̌.

We shall concentrate here on those aspects of computer science holding much in common with mathematics.
(6) 1. Mathematics and Computer Science. Classical and modern mathematics can and do interact with computational mathematics in a variety of ways. Computational mathematics often makés extensive use of linear algebra. One impor'tant and widely used way is in the solution of systems of equations, usually linear systems. While many elementary college (or high school) courses teach that the infiverse of a matrix of order n, ifit exists, can be used to solve a linear system, this is not a good way to accomplish a solution with a computer. This method would generally involve \mathfrak{y}^{3} operations for a system of n equations in n unknowns. For a system of equations involving a thousand equations and a thousand unknowns, this would represent roughly one billion multiplications or simliar operations. Methods have been developed using matrix algebra and other techniques from linear algebra that reduce this number to n^{2} steps or fewer, This cuts the corresponding number of required operations to something less than one million. Not only does this require far less in the wayfor computer resources, but these methods also tend to reduce the round-off error inherent in, all digital computer operations.

- A great deal of time and effort is involved-in finding methods of solution for systems of ordinary or partial differential equations. While many courses in differential equations are concerned 'with the existence of a solution, the com-

puter scientist innst be able to conmute the solntion. Irrefuently the methods will , be iterative in nature. 'Thas two guestons atise: Dies the technigue converper' How hood an aproximation doss one desiré Computing time and acenracy are parainombt in the consideration of teclyniques.

There is tremendons interest in umderstanding, the lopic of eomputation, both the logic of the propran, and the hardwate. Ciurrently there is some experimentation in "parallel" eomputers desipned tos do a mumber of simmitacous operations. The guestion of which computational algorithms are best adapted for this type of approach represents an area of active research.

In the organization of large data bases and in the problen of sorting such data - bases, the use of graph theory is proving to be of incstimable value. Graph theory also fands its applications in ilic design of compilers and interpreters. Such applications are needed in the matter of informption retricval for users such as the Internal Revenue Service, the Burean of Census, and other agencies of the Federal govermment, as well as for large corporations.' .

Nomerical analysis is a mijor consideration in solving problems with computers. In fact, several of the previousty mentioned topics are part of mmerical analysis. (While consideration needs to be given to the existence of solutions or the likelihoold that a given problem may, in fact lave a solution, there are computatifnal complexities"such as romed-off errors, divergence, or instability of a propoled nomorical method that are of equal importance.) Other mathe;-matics-oriented computer areas are: mathematical programming, simulation, C artificial intelligence, and computational complexity.
2. Working as a Computer S'Sientist. A mathematician with a bachelor's -degree hired in computer-related work will invariably start as a computer programmer. 'Plae largest employers are manufacturing firms, banks, insurance companies, data processing service organizations, and government agencies. It is' recommended that undergraduate mathematics majors include in their preparation at least three or four computer science courses.

At the master's level more opportunities are opened, There are three basic areas where jobs are available. (1) Teaching is open at high school and junior college levels: for someone who can teach comptuer science and the mathematics associated with computer science. (2) The majority of governmental and industrial daboratories use computers: a large number of them have their own computers. New and more efficient methods for solving problems are in demand, and many places want to have thệr own inhouse computer expert, someone who knows computers, people, and problems, and can use this knowledge to obtain results, (3) Perhaps the biggest employers in computer science are the "software" finms - companies whose business is to write programs for computer users. A majqr problem is to define and write programs that are casily modified and iransported from machine to machine. This involves developing programs that are modular, self-documenting, and generally wellstructured. This is a very profitable business in today's market and promises to , continue to be. Advancements in computer hardware are appearing on the

 times whole mew icteras mast be generated on shont notice.

 post-dactoral tellows, and in" natiy ways condere reseanch as thouph they were miversitics. Mathematiciaths as well as computer sciontists working at these laborateries ate among the word leaders in the fiedds mentioned earlier. I ike-- wise, some of the fatemment laboratoriesthave a major mole in the prodnction allal coordination of bompinter !nathemanics. Similar positions are be be fond in some af the many consulting firms dealing: with operations fesearch and the use of the computcr.

The demand for Phil). sin compuiter science is exceptionally high, is flere are
 master"s degres hats resnled in only 15 ofa of, these sthents electing ta continne for the lh. $)$. The ammat production of computer science Ph.D.'s has remained - romghly constant (at approximately 220) for the last, cight years. Of those who do set the lle.l., the majority are eventally attracted by the higher pay and befter working conditions of industly (sec N.S.if, Propan Repont Vol. 5, No. o, Oct., 1981).

The demand for poople with traning in computer seience especially these with experience, execeds suply. Salary figures vary, but entry level salaries of \$20;0XO)
 $\$ 32.00$ g for holders of Ph.D. degrees in eomputer seience are common (sec AFIPS publicatinu A I ook Into Computer Careers.

Reforences for cater information are included in the listing in l'art X.

PART III: OPPORTUNITIES IN OPERATIONS RESEARCH

Authors and practitioners generally agree about what operations research is, but differ in emphasis and detail and use different words to express it. One lengthy description that has passed the test of time was first puiblished in 1946 by Phillip Morse and George Kimball in a classified report of the Navy'Operations: Evaluation Group entitled "Methods of Operations Research' and repeated in the updated revisions that were published as unclassified books ànd were in print. for at least two decades. Here it is:
\therefore
"Operations research is a scientific method of providing executive departments with a quantitative basis for decisions regarding the operationts under their control:
". . operations research is a scientific method. It is an organized activety with more or less definite methodology of attacking new problems and finding definite solutions. . .the term scientific method implies more than sporadic application and occasional use of a certain methodology; it implies recognized and organized activity amenable to application to a variety of problems..
" $:$. .operations research is of service to executive departments... IIt is, therefore,] an applied science utilizing all known scientific techniques as tools in solving a specific problem. . .As: we shall see, operations research uses mathematiqs, but it is not a branch of mathematics.. Just as civil engineering uses the results of science in order to build a bridge, so operations research utilizes these various techniques as tools to help the executive. It. is likely, however, that operations research should not be classed as a branch of engineering. . The engineer is the consultant to the builder, the producer of. equipment, whereas the operations research worker is the consultant to the user of equipment.
"The next important word in the definition is quantitative...Certain aspects of practically every operation can be measured and compared quantitatively with similar aspects of other operations. It is these aspects which can be studied scientifically.
$\xi_{\text {The task of the operations research worker is to present the quantitative }}$ aspect in intelligible form to point out, if possible, some of the nonquantitative aspects that may need consideration by the executive before he reaches his decisions. But the operations research worker does not and should not make the decision."

Operations : Research as we know it today is primarily an out-growth of a militäry research in World War II, aimed at questions such as "How should patrol aircraft be deployed to maximize the expected number of enemy submarines detected in a limited number of hours of search?" and "How should a

12

13.
limited inventory of spare parts be distributed among units in the field, advance depots and distribution warehouses to minimize equipment down-time due to pants shortages?".

At the end of the war, operations researchers moved into industry, where it was rapidly realized that similar questions were in need of answers. They reádily transferred their experience to the elucidation of a host of problems in resource allocation, production scheduling, goods and materiel distribution. Here they joined with practitioners of management science, which has a history dating back to the turn of the century, to apply the same quantitative techniques to problems in budgeting, planning, marketing, decision-making, and other aspects of management that previously were treated as arts or "soft" sciences.

A few bractitioners returned to the universities to lay the foundations for educatioftal programs in operations research. Today there are over 100 degreegranting programs that can be called operations research. They bear a variety of names and their, place in academic organizations is not the same' everywhere: Some have developed in schools of science and engineering by the extension of systems analysis methods to interdisciplinary operating systems. Some have developed through application of quantitative methods to business administration, political science, and economics. Others have developed in close alliance with computer centers, reflecting the importance of general purpose computers, computer modeling, and techniques such as linear programming, differential games, Monte Carlo simulation, and Markov processes to the effective application of operations research to real problems.

The majer professional sqcieties in the United States are the Operations Research Society of America (QRSA), founded in 1952, and the Institute of Management Sçiences (TIMS), founded in 1954. Together they have more than 11,000 members.

1. Mathematics in Operations Research. Although operations research has
*" many aspects, we will concentrate' on the mathematical aspects. A great deal of operations research deals with determining the optimum'way to do things based on some mathematical model of a situation. Often this model is a statistical model. The major mathematical tools entering into O.R. are advanced calculus, linear algebra, differential and difference equations, probability, statistics, and computer programming. A sample problem might be the optimum operation of toll booths on a bridge or turnpike. The problem is to achieve the best balance - between having idle attendants during slack hours and too much delay during rush-hour. One-would have to determine the statistics of the traffic flow, construct a mathematical model of the queuing system; determine the expected number of idle attendants and the expected delay as a function of the number of attendants. The resultant expression is then analyzed to determine the optimum performance, given any other restraints imposed

The above is a rather prosaic, but not atypical, sort of problem faced every day 'in the O. \dot{R}. field. Some of the problems are elementary in their mathematical content (but not necessarily in their formulation from the real world), but many

are mathematically' formidable. One such problem, which is still unsolved, is phrased as the traveling salesman problèm. A salesman has a customer in each of certain cities. Find the shortest tour enabling him to visit all his customers. This
known has been warked out for specific cases, but a general solution is not acterize the shortest path joining a certain number of nodes. A second fascinating mathematical problem is that of maximizing (or minimizing) some function, given inequality constraints (e.g., everything must be positive; the sum of the variables is bounded above by a fixed bound," or the variables must all. be integers). Linear and integer programming are among the techniques utilized in solving this type of problem. A third question is that of itinding a solution for five simultaneous equations in ten unknowns. Clearly a unique solution does not exist - what is the best "solution" and in what sense can it be uniquely defined? This becomes eyen more of a problem when one is faced with five hundred equations in a thousand unknowns. Such problems arise when one is not conversant with the real laws governing the underlying system involved:

We have tried to suggest above a few of the mathematical questions arising in a the practice of operations research - by no means exhausting such topics. Courses particularly relevant to this field include calculus, probability, statistics, linear algebra, number theory, abstract algebra, and graph theory. These are common courses in mathematics depart thents. Other particularly relevant courses, which may be given outside the mathematics department, are linear programming, control theory, integer programming, dynamic programming, game theory, and queuing theory, as well as computer programming and simulation,
2. Working as an Operations Researcher. An individual with a bachelor's degree in mathematics and some applied minor can possibly obtain direct employment in operations research, although this opportunity decreases as the number of schools offering. a B.S. in O.R.aincreases. One generally works on a team, simulating some industrial or government process with a mathematical model. The mathematicians are expected to know how to solve the models developed, and to be able to recognize when the mathematics is so badly posed as to be unsolvable.

Möst employers will be more confident in an operations researcher who has earned at least a master's degree. A good working knowledge of economics, finance, and organization theory is also valuable. With such training one can begin to lead projects such as those sketched above. Most O.R. groups, whether departments in an organization or independent companies, tend to get involved in a wide number of problems in the optimum allocation of resources, and one begins fo recognize that the underlying procedures are the same. Often, the only difference between problems is that they are phrased in different languages. One must develop a speaking acquaintance with several fields; for the O.R. person is very much in the role of a consultant. In fact, there are an estimated 10,000 companies and self-employed individuals devoted primarily to consulting in operations research. Most of the people active in operations research today have .
\because academic degrees in statistics, mathematics, economics, or some branch, of engineering or science, but a growing proportion ate joining the prafession with advanced degrees in operations research. Compensation is competitive with \therefore engineering and science, and the dẹmand is considerable.
$-$
\because

 - numbers Since numerieal information plays an important role in our daily lives, all of us can profit frem some knowledge of statistics. But complex problems call'for the services of professional statisticíans.' Státisticians teach ${ }_{\text {s in }}$ colleges and universities, provide information for national, state, and local government, and work for business and industry. Often "he work of a statistician overlaps with that of a mathematician. The student interested in statistics as a career is there-d fore well' advised to pay attention to the other sections in this pamphlet, parficularly Parts III and VIII on opportunities in operations research and the: mathematician in industry and government. The pamphlet Careers in Statistics listed among the references is recommended reading for anybody interested in statistics as a career.

The primary professional organization of statisticians is the American Statistical Association. To paraphrase'rastatement in the Society's official journal, the membership of ASA is not confined to professional statisticians but includes economists, engineers, mathematicians, biologists, actuaries, sociologists, - psychologists, as well as business, executives, research directors, government officials and others who are seriously interested in the application of statistical datal. Founded in 1839, the ASA is the second oldest professional organization in the United States. In 1939, it had about 2,500 members. By 1981 its membership had grown to about 15,000 reflecting the tremendous expansion of the uses of statistics.
${ }^{2}$ Two more specialized organizations are the Institute of Mathematical Statistics founded in 1935 and the Biometric Society founded in 1947: The IMS is an international society of persons interested in probability and in mathematical aspects of statistics. The Biometric Society is an international society of persons 'interested in the quantification of the biological sciences.

Other associáfions of interest to statisticians are the American Association for Opinion Research, American Society for Quality Control, Econometric Society, Operations Research Society, and the Psychometric Society.

1. Education for Statistics. In recent years more and more colleges and universities have begun to offer undergraduate majors in statistics, though more often than not students will take statistics as a minor along with programs in mathematics and/or computer sciénce, the biological or social sciences, or business. Job opportunities, both in the private and public sector, are good for the students with undergraduate training in statistics, particularly if the student also has computer programming experience. *
Most professional statisticians have graduate training in statistics and probability. Students embarking on a graduate education in statistics should have good undergraduate preparation in mathematics. If the student selects a graduate program in. statistics and probability that emphasizes theory, considerably more advanced work in mathematics is required. The November issue of the American

Statistician, a publication of the Ámerićan Statistical Association, provides up-to-date information on over two hundred degree programs-iln statistics and biostatistics at U.S/and Canadian univèrsities.
2. Working as à Statistician. Statisticians give adyvice on the statistical désign of experiments; conduct surveys, analyze data with the help of existing statistical techniques, or devise new mẹthods of analyșis. They make ever increasing use of computers, often writing their own programs or modifying existing prpgrams.
\therefore Statisticians rarety work by themselves. They collaborate with specialists in fields such "as agriculture, the biological and health scjehees, economics", psychology, sociology, as well as business and industry. New fièlds for statistical applications arise continually. Two of the newest areas are law and public policy.

The diversity of statistical applications can be seem from the book Statistics: A

- Guide to the Unknown, in which well-known statisticians describe their contributions to the solution of problems of man in the biological world, the political world, the social world, and the physical world.

One of the chief employers of statisticians is the Federal Government. Statisticians are found in the National Bureau of Standards, the Bureau of the Census, the Bureau of Labor Statistics, the Depărtment of Agriculture, the Department of Defense, the National Institute of Health, and the Environmental Protection Agency.

- At universities we find statisticians in departments of mathematics and/or statistics or bio-statistics. But it is also quite common to find faculty members with strong involvement in statistics in depártments such as biology, business, economics, health sciences, psychology, and many more. In recent years, even fields like english and history have developed strong quantitative interests. An important aspect of the work of statisticians in academic institutions is to provide advice on statistical matters to researchers throughout the institution. Graduate students in statistics are adyised to become involved in statistical consulting at the earliest opportunity,

The role of the statistician in industry is discussed in some detail in Part VIII. Both industry and government often rely on private consultants for statistical advice and services.

Part VIII of this pamphlet disćusses salaries of mathematicians in business, industry, and government. This' information applies equally to statisticians. Currently (1982), in-an-academic career a young Ph.D. can expect to start at approximately $\$ 19,000$ for the academic year. Full professors earn between $\$ 25,000$ and $\$ 80,000$ for the academic year, with the possibility of additional income for summer research or private consulting. There are private consultants who earn $\$ 100,000$ per year or more.

\because, \therefore The actuatial field is one of the older areas, for mathematical applications, - extending bacik at least 200 years or more. Two of the eafliest developments were in regard to mortality or life tables and to compound calculations. These were e. combined in the eighteenth and nineteenth centuries to provide the scientific basis for individual life, insurance and life annuity contracts. In this century, individual insurance contracts have beentrefined greatly, and there has been a . 'tremendous growth in group plans providing life, htalth' disability'and pension benefits, and a parallel developmeṇt of Social Security. Another part of actuarial science is concerned with the evaluation of non-life "insurance risks such as those coyered by autompbile or fire insurance. The 'extent and complexity of these vatied insurance plad s, and the maturing of pension and Social Security systems,

- Dave created strong demand for competent actuaries.

What is an actuary is a question that most people are unable to answer with much confidence. A concise definition has been offered recentlo by Society of Actuaries Past President John Bragg in his paper "The Future of the Actuarial Profession as Viewed in A.D. 1974"' (Transactions of the Society of Actuaries 1974), namely: Actuary: A professional who is expert at the derisq financing, and operation of insurance plans of all kinds, and of annuity and weffare plans. Defining an actuary as a professional implies three things: appropriate education', experience, and adherence to a code of ethics. Because actuaries affect the financial security of many people, they must bring intelligence and integrity to their work.

1. Education and Examinations. An actuary should have good mathematical aptitude and a thorough background in calculus, linear algebra; probability, statistics, computer science, and data procesing. Courses in accounting, economics,' English, finance, marketing, and liberal arts are also important to. provide a broad foundation for approaching the many problems an actuary has to face.

The Society of Actuaries provides a series of ten examinations in the fields of life and health insurance and pension funding. Passing the first .five of these qualifies a candidate to be an Associate of the Society of Actuaries (A.S.A.) and completion of the final five leads to designation as a Fellow of the Society of Actuaries (F.S.A.). In the non-life insurance field, the Casualty-Actuarial Society offers examinations leading to Associateship (A.C.A.S.) and Fellowship (F.C.A.S.) in that organization. The first four examinations are jointly administered by the two organizations. A booklet describing the Preliminary Actuarial Examinations (Parts 1 and 2), and outlining the later examinations may be obtained from the Society of Actuaries, 208 LaSalle Street, Chicago, Illinois 60604, or from the Casualty Actuarial Society, 250 West 34th Street, New York, NY 10119. There may be considerable revision of the associateship syllabus over the next decade. Basic concepts will endure but their development may proceed on somewhat-modified lines under the influence of advances in mathematical,

statistical, ardd computer science areas. It behooves the prospective actuary to get a good grounding in all three of these areas. The student should also take the preliminary actuarial examinations and perhaps further examinations while he or she is still in college.

An "entrolled actuary", designation, granted by the Federal government, is required to certify reports to the government concerning pension plans. The "enrolled actuary" designation is earned by "passing two. examinations (jóntly "given by "the Society of Actuaries; the Joint Board for the Enrollments of Actuaries, and other actuarial organizations) and meeting certain expetience requirements.
A number of colleges and universitiessin the United States and Canada offer egürses at the undergraduate or graduate level leading to degrees in actuarial science. A list of such institutions can be obtained by writing to the Society of Actuaries. Their courses are mainly at the associateshiplevel but some give background for the fellowship examinations and for professional development, in addition to getting the students started through the early examinations. *

A number of women have distinguished themselves in actuarial careers, and minority students are being assisted towards qualification. A special' scholarship. fund for minority and women students is available through the Society of Actuaries to help finance the graduate education of süch students.
2. Working as an Actuary. About sixty percent of actively employed actuaries work for insurance companies. The following comments are abstracted from the booklet The Actuarial Pròfession but have been generalized to include non-life insuranc̈ce.

The business of insurance involves the assumption of risks and the payment of claims. The actuary is responsible for seeing that the risk is properly defined and evaluated, that a fair price is charged for assuming the risk, and proper provision is made to'pay all claims and expenses as they occur. Insurance company actuaries engage in a variety of other important activities ranging from research to management functions. For example, an actuary may study the claims experience, in partiçular, the mortality and survival experience of insured persons. Most actuaries become involved with development of new applications for electronic computers in their company's operations. Or they may apply mathematical models or techniques of operations research to insurance company problems and may engage in corporate planning.

Consulting actuaries, who now include more than one third of all active actuaries in America, offer professional advice to corporations, insurance companies, state and local governments, labor unions, joint labor-management trustees, Federal government agencies, and attomeys. As indicated in the booklet, The Actuarial Profession, the consulting actuary often deals with top financial and administrative officers of client organizations who present a variety of challenging assignments such as: designing a pension plan for an employee group and advising on a sound program for financing the benefits; participating in a collec-

滑
live bargaining session on pension proposals; developing a new computer system for an insurance or pension organization; testifying in court regarding the assessment of damages in an accident. .

Through the old age, survivors, disability, and medical benefits provided by Social Security, and through the supervision of insurance and pension funds by governmental agencies, there is a growing number of opportunities for actuaries in public service. Important general responsibilities of actuaries in government are to advise on legislation ah to act on regulatory matters Specifically, an actuary may be called upon to testify before a Congressional committee on incurance matters: to establish actuarial guidelines for tax deductibility of pension costs; to assist in census or demographic studies; to examining an insurance comer any or an employee benefit plan to determine if it complies with regulations.

Some actuaries are also employed by -large corporations or labor unions with major responsibilities related to employee or "member benefit plans." Other actuaries are employed in organizations offering computer or financial products and services. A number of actuaries have found opportunities in universities for actuarial teaching, research, and public service.

Although some indications are emerging that the supply of actuarial students has been catching up with the perennial demand, there will remain for the foreseeable future a strong need for competent actuaries. An uncertain economy is posing many new problems for the actuarial profession, and the current active demand for qualified actuaries should continue strongly.
In 1982, the median starting salary for students with no examination or only the first part passed was approximately $\$ 18,000$, and for students with 4 or 5 examinations passed the median starting salary was about $\$ 22,000$. Actuaries can advance rapidly with experience and examination qualifications to salary levels which are three or more times the starting levels. A substantial number of ${ }^{\circ}$ actuaries go on to senior management positions in their organizations.

this area is the existence of equilibrium in a compeqtitive economy. The problem simply stated is this: given a free market in which prices respond to the law of. supply and demand and a set of assumptions about the behavior ${ }^{*}$ of consumers and producers, will prices eventually regulate themselves to values at which supply and demand'exactly balance? Other topics which occur concern indivjdual behavior, stability of equilibria, oligopolic systems and the economics of the welfare state. Linear algebra and real analysis are heavily used, as well aş differential and difference equations, topology, set theory, logic, and combinatorial mathematics.

Recently some sociologists have adopted some of the techniques of mathematical economics to study social relationships. .
One of the earliest uses of mathematics in biology was in the study of population growth. If we assume that the growth of a population of organisms is not affected by pressure of resources, then we arrive quickly at the conclusion that the number of organisms existing after a given period of time is a constant multiple of an exponential function of the time period elapsed. However, as we take into account additional factors such ${ }^{\text {'as availability of resources, the model }}$ becomes more complicated and the mathematics more sophisticated. Other areas in biology and medicine which are studied by means of mathematical models are immunology, epidemiology, ion transfer across membranes, and cell differentiation. Neurophysiology is closely associated with psychology in the study of models of perception and learning. Frequently used mathematical tools are ordinary and partial differential equations, control theory, optimization theory, stochastic processes, and computer science, as well as some topology.

In psychology, ońe finds mathematical modeling closely associated with experimentation. For example, consider the "simple learning" model. A subject is placed in a repetitive choice situation in which different responses carry different rewards. As the reward pattern reveals itself to the subject, the subject's : responses slowly change. The problem is to explain the laws governing the evaluation' of the choice pattern within the framework of the experiment. More complex learning situations are studied; as well as problems in stimulus response, reaction time, preference behavior, and social interaction. Computer modeling is used to simulate the organization of the nervous system. Another kind of problem which arises in mathematical psychology occurs in the theory of measurement and scaling. The categories of mathematics which hàve been heavily used are probability and stochastic processes, computer science, combinatorial mathematics, set theory, and some analysis.
Mathematical linguistićs has become a major force in the study of linguistics, the science of languages. It has some relationshith mathematical psychology since it is concerned with the range of humanly possible linguistic structures, rather than with the particular qualities of any given language. This area makes use primarily of set theory, logic, algebra, automata theory, and computer mathematics.

The above descriptions of mathematical problems arising in other fields are by no means exhaustive. The student interested in doing inathematical research in. biology or the social sciences is on an intellectual frontier where the possibilities are manifold.
2. Education for Interdisciplinary Research. There is no well-defined educational path for students wishing to entér these interdisciplinary areas. A sampling "of those now engaged in each of the various fields would show considerable diverşity in patterns of formal education, although it can be safely said titat thẹre \} is little opportunity without a doctoral degree: A strong undergraduate education with a double major would be the ideal start. Short of that ámbitious program ą major in mathematics with considerable course work in the other field would be a good beginning. It does appear to be important that the mathematical waining be started early, and preferably that it include some work. in statistics and computer science. There is no prescription for graduate study. This depends very much on finding an individual or group working in the area one would like to pursue. Mathematical biologists and psychologists may be found in some departments of biology and psychology, ヶespectively, but often are based in departments of mathematics or applied mathematics. A student who is interested in entering one of these interdisciplinary fields, or any of the others-involving social sciences would do well to engage in some preliminary research to locate an appropriate graduate department. (A partial list of professional organizations is included among the references at the end of this pamphlet.)
3. Employment in Interdisciplinary Areas. Most of the people now working in the interdisciplinary. fields described above hold academic posts. Others are employed in research organizations sponsored by government, industry, or foundations. Still others are in hospitals and in consulting firms. Since these fields are increasing in importance one can expect the employment picture to be favorable. It is, however, vulnerable to the pressures affecting the general academic market and government supported research, and growth is more likely to occur in the areas of consulting and industrial research.

PART VII: TEACHING MATHEMATICS,

There is a serious, nationwide shortage of mathematics teachers in 1982, especially at the secondary school level. The need for new teachers is expected to . continue through the 1980's.

According to a 1980 survey conducted by the State Departmentiof Public Instruction in lowa, a shortage or critical shortage of mathematics teachers was identified in 35 states. By 1981,43 states hád such shortages. A separate:survey
\because •by the Association for School, College and University Staffing (ÅSCUS) confirms these figures' and reports that no ŕfgion of the couniry, except Alaska, has" an adequate supply of qualified mathematics teachers. A research memorandum of the National Education Association detailing teacher supply and demand in public schools during the $1980-81$ school year stated that mathematics was the only subject in which every region of the country reported shortages. Still other independent surveys confirm these findings.-
This need for mathematics teachers has developed because the demand for mathematics and computing courses has increased sharply during the past decade, while the number of new mathematics teachers decreased during the same time period.
Among the reasons for the increased demand for mathematics in secondary schools are desires for minimum competence, increased number of girls taking higher mathematics, growing enrollments in computer science, and higher admissions requirements in mathematics at universities and colleges.

Yet, while the demand has been increasing, the supply has been diminishing. This was partly due to the fact that in the 1970's the employment situation for mathématics teachers, especially at the secondary level, was not good. Shrinking school populations and concurrent economizing by cities and towns in most parts of the country lowered the demand for teachers during that period and jecpardized the security of those who did hold positions. At the same time a burgeoning computer industry was able to absorb many young people with mathematical training. In consequence, the number of students in teacher certification programs decreased sharply over the last decade.

Although the high school population nationwide is not yet increasing, demand for mathematics is. The necessity for preparing students for an ever more technological society and the role of mathematics as the foundation of such preparation has become apparent to all.
Students should be encouraged to think about teaching as a career if they have any inclination in that direction. It is a demanding profession, but one which offers substantial rewards. Professor Edwin Moise of Queens College of the City University of New York put it well:

Teaching is a very ambiguous interpersonal relation. The teacher is a performer, an expositor, a taskmaster, a leader, a judge, an advisor, an authority figure, an interlocutor, and a friend. None of these roles is easy,
and many of them are mutuallygineongruous. . . one of the vital elements in teaching is the enlargement and refinement of the student's aesthetic'perceptions; when he is 'turned on' by something that did not turn him on before, real progress has\%een made.
(Notices, AMS 20 (t973).219.)
Mathematics teachers today must know more mathematics and more about ,related fields thän was required in the past. Theyy must have a breadth of mathematical knowledge, including, now, some knowledge of computer science, and also some understanding of how to apply mathematics to other disciplines.
There are three essentially different types of mathematics teaching: elementary and secondary school teaching, junior or community college teàching, and college or university teaching. The conditions of employmènt, education for - employment, and the nature of the students differ drastically, so they will be discussed separately.

1. Teaching in an Elementary or Secondary School. Teachers in a public school (as opposed to a private school) generally must be accredited by the state education systom. The requirements for accreditation vary from state to state. (Candidates for public school teaching should be alerted to the National Council. for Accreditation of Teacher Education (NCATE) and the reciprocity agreement among many sthes which enables one trained ingne state to teach in another and allows changes in position with reasonable sffy thness.) They generally require that certain courses, usually in education *aken prior to any permanent appointment as a teacher. Sometimes thesed. os s can be taken at night or during the summer while teaching. Having a age or even a Ph.D., does not by itself certify someône to teachin a public school. A person envisioning teaching at this level is well advised to check on the certification requirements early in planning a college program.
${ }^{3}$ Since calculus and linear algebra are now being taught in many high schools and in practically every preparatory school, the prospective secondary school teacher must be qualified beyond this level. Geometry (Euclidean and transformation), probability, statistics, and the history of mathematics are necessary parts of a teacher's preparation. To teach effectively it is also desirable for the teacher to have taken more advanced courses in analysis and algebra in order to know how the material being taught is related to more advanced mathematics.
"Advanced calculus" is a nice integration of calculus and geometry; projective geometry gives an insight into both Euclidean geometry and algebra; and numerical analysis courses give a good mixture of algebra and calculus. Another variable course is number theory, because this is one of the few areas of mathematics where high school students can do original research. This is also an area especially suited for dncouraging the really gifted student. A course in model theory, particularly models related to non-traditional areas such as business and the social sciences, would also be beneficial.

$$
25^{f 0}
$$

Most secondary schools and many elementary schools already have computers available for classroom use. Microcomputers, are most common. Teachers should know at least one computer language ewell. (BA'SIC is still used primarily, but PASCAL and LOGO are growing more popular in education.) Many mathematical ideas and skills are stimulated by computer use. In addition to teaching students to program, teachers should use computers, as appropriate, to enhance the learning of mathematics. For example, a microcomputer with video display can be an effective demonstration aid during lectures, and an efféctive standalone instructor of new concepts or for drill. Also, computer assignments can be made which stimulate creativity and strengthen students' reasoning skills, 'but would be too tedious to do by hand.

The prospective secondary school teacher will do well to study all of theiabove subjects. Both for breadth and for "relevance," these courses will increase the prospective teacher's marketability. The prospective teacher in the private school will probably find all these courses necessary and may find a master's degree essential.

Elementary school teachers face different problems. They must teach all subjects, not just mathematics. Therefore, they usually do not major in mathematics, although suč" a major should be seriously considered by anyone who particularly enjoys mathematics and desires to teach at the elementary level. The mathematics courses they should take are primarily those in number sysiems, elementary algebra, geometry, probability and statistics, set theory, and logic. There is a great need to improve the quality of mathematics education at the elementary school level: ${ }^{\prime \prime}$

For more information on what secondary and elementary mathematics education should be, see An Agenda for Action: Recommendations for School Mathematics in the 1980's, National Council of Teachers of Mathematics, 1980.

Salaries in the public school system tend to vary widely from one geographic area to another. According to the figures from the Educational Research Service,* the nationwide average for secondary and elementary school teachers was estimated to be $\$ 19,275$ for 1981-82. The 1981-82 salaries averaged $8-9 \%$ higher than those in 1980-81. Various fringe benefits are also available to most elementary and secondary school teachers.
2. Teaching in a Junior or Community College. These colleges attract students with widely varying academic needs. In the big inner-city community colleges, close to 85% of the mathematics taught is remedial (near the grade-school level), These students are frequently those who did poorly in high school, but who are re-entering school and are better motiyated. The remaining 15% is freshman and sophomore mathematics of the type usually taught in a major university. For the schools in more affluent areas the percentages change, but the range of mathematics courses is not significantly different, Many junior colleges are offering

[^0] Inc., Washington, D.C., 1982.
extensive computer programs. Relevance to career opportunities is often the major factor in the schools existence and choice of curriculum, particularly in the case of public community colleges.

The teaching.loads are usually heavier in junior colleges than in most four-year colleges,' but often lighter than in secondary schools. Most junior colleges have a great many students and quite a number take mathèmatics. Because of the very wide range of student abilities, many of the junior colleges have experimented, with varying degrees of success, with individualized instruction, programmed learning, and non-traditional ways of teačhing. In fact, one of the fascinations of being on a junior college faculty is the opportunity to try new methods of teaching with an audience which is mature, often desperate for a working-understanding of the subject, and generally well motivated.
 Ph.D.'s on junior and community college faculties . (the $1 / 980$ American Mathematical Society Two-year College Survey indicated that among those institutions reporting, 15% of the full-time mathematics faculty members held doctorates), but as yet there is no major push to hire Ph:D:'s in mathematics. Faculiy members with doctorates often become adminisfrators because the primary function, in fact almost the sole function, of these fchools is teaching, not research. With the typical range of students, the teaching is an inspiring and. exciting challenge. A knowledge of applications is essential. Most students here are job-oriented, many even work part-time. These students are primarily interested in how mathematics can be used. They recognize that mathematics does have application to the careers they intend to enter and they are well motivated to leatrn the mathematical tools of the trade.

Many junior and community colleges are under State Education Systems, and have certification criteria similar to high schools. Others are strictly under local control. The salaries at such schools are reported in the Two-Year College Mathematics Journal. The $1979=80$ salary survey showed the follówing range for: the middle fifty percent of salaries reported: nondoctorate, $\$ 15,800-\$ 22,000$; doctorate, $\$ 16,800-\$ 23,400$. Since these figures are based on $9-10$ months employment, one can often add up to an additional 20% for summer employment.
3. Teaching in a College or University. The Ph.D. is required, with rare exceptions, for positions in a college or university. Many positions are open throughout the U.S., mostly in four-year colleges, and most of these prefer or require mathematicians able to teach computer science courses. Since not many college level openings were available during the 1970's, the supply of Ph.D.'s diminished. Hence there is now a shortagẻ of candidates for these. There are also some openings at universities for new Ph.D.'s with outstanding research potential.

University professors, that is, teachers in an institution offering a graduate program, are expected to specialize and to spend a major portion of their time with graduate students, doing research, and keeping abreast of the developments on the frontier of their fields. Formal çlassroom teaching usually occupies less
\&.
time than at an undergraduate institution. These professors are expected and required to maintain a reputation beyond their school's boundaries by-publishing original research, writing books, turning out outstanding research students, or contributing their expertise to national organizations. As this description suggests, the university professor has a responsibility for expanding the boundaries of knowledge.
The college professor, that is, a teacher in an undergraduate institution, will typically have twice the teaching load of the university professor. He or she may be expected to maintain a reputation beyond the school walls, but even outstanding research will not guarantee employment in the face of poor teaching performance. The college teacher should expect to have to teach mathematics courses outside his or her own specialty. (Typically one learns some of these fields "on the job" by continuing to study after starting to teach. Sometimes one is given time off to learn new ideas.) In a college the professor has students who want mathematics simply because it is a beautiful subject, but most of the students want to use mathematics or are required to take it. It is quite valuable for the prospective college teacher to learn applications, be versatile, and, most important, have a knowledge of computer science and statistics. Furthermore, a number of universities and colleges are now offering remedial courses in mathematics. Prospective teachers should recognize that courses must be taught at various levels, and hence they must be prepared to teach at developmental as well as advanced levels.
Salary figures for college and university professors are published each year, usually in November, in the Notices of the American Mathematical Society. The latest issue (1981) lists salaries for schools depending upon their mathematics reputation. For a "distinguished" school offering the doctorate the average beginning salary for an assistant professor was $\$ 20,100$, up about $\$ 300$ from the previous year. The professorial salaries averaged $\$ 40,450$, although the top salary reported was $\$ 61,000$. These are salaries for $9-10$ months employment. One can expect to add additional income (ưp to 20% of the base salary) for summer employment.

For colleges andomaster's degree granting schools, the salary, figures are slightly lower. An assistant professor with a doctorate in a four-year college was averaging $\$ 18,600$, up $\$ 1,600$ from last year. In an institution granting an M.S. the average assistant professor salary was $\$ 20,750$, up $\$ 1,600$, and the average full professor salary was $\$ 31,300$, with the top salary reported as $\$ 47,600$.

The major professional organizations for mathematics teachers at the college and university level are the Mathematical Association of America, the American Mathematical Society, and the Society for Industrial and Applied Mathematics. For mathematics teachers at the elementary and secondary levels the major professional organization is the National Council of Teachers of Mathematics.

PART VIII: THE MATHEMATICIAN IN GOVERNMENT, BUSINESS, AND INDUSTRY

Private industry, business, and government are major employers of mathematicians and computer specialists. A recent U.S. Department of Commerce sample survey (Facts from the 1976 Natiónal Survey of Natural and Social Scientists and Engineers, U.S. Department of Commerce, Bureau of Census, issued in February, 1977) shows that in a population of about 25,000 mathematical specialists, the proportion who were employed in 1976 in industry, Federal and public administration, and services other than education was 50%, compared to 47% employed in educational institutions; or, alternatively, the proportion who. reported their primary work activity as research and development, management or administration, production and inspection, consulting repport writing and statistical work, or computer applications, was 58%, compared with 37% who. reported teaching as their primary activity. The propoption of computer specialists in private industry, business, and services was even kigher, 78% of a population of about 51,000 . Except in a few research institutes, mathematicians in government, business, and industry were hired because they can contribute to the solution of some on-going problem, and at least some of their work must show some relevance. Rarely do they work alone; usually they are part of a team. Thus a fundamental requirement is the ability to communicate about problems that are poorly formulated mathematically by people with limited mathematical training.

1. Working as a Mathematician in Government, Business, and Industry. Several of the areas in which mathematicians serve in government, business, and industry are discussed at some length elsewhere in this publication. However, since many students and teachers of mathematics have had no personal experience with the opportunities which exist outside schools, colleges and universities, a brief summary of each of the major areas is given below.
a) Computer Mathematician (Some of whom have job titles like Systems Programmer or Systems Analyst). Almost every government agency, business, and industry in the world now makes extensive use of computers, and there is a great demand for pegple who can communicate with a computer correctly and efficiently. There is a wealth of genuine mathematical problems in computer programming idvolving logic, combinatorics, number theory, and algebra. Computers are expensive to operate and there is a premium on efficient usage, and hence most companies, both users and designers of computers, are interested in the efficient working of computer operations. Most young mathematicians at the B.S. and M.S. level are, in fact, hired)as computer programmers. This work can be routine and dull if one allows it to be, but it need not be. Most users öf computers do not understand the non-commutativity of finite arithmetic, or the elementary logic of algorithms, or how to estimate errors accurately in approximations. They routinely use the most available computer program, regardless of its real applicability. Someone who can understand poorly worded problems and

translate them into efficient algorithms becomes valuable. To understand the problems rèquires good will, common sense, and a great deal of persistence, as well as a sound knowledge of mathematics. Anyone who expects to work as a mathematician in governmènt, business, or industry must have some computer experience. More information about computer science may be found in Part II.
-b) Operations Researcher (Some of whom have job titles like Operations Analyst, Systems Engineer or Systems Analyst. Note that the last job title is usually ambiguous). There is a rapidly growing demand for this type of mathematician. He or she is expected to construct simple mathematical models of complex structures - social, economic and rechnical, civil and military, government, business, and industrial. Ideally, the models must be complex enough to approximate the real world with some predictive value, and simple enough to be exercised. As' with any relatively new field, operations research can be exciting, challenging, frustrating, and disappointing: Part III of this pamphlet discusses operations research in some detail. Essentially, it is the "mathematics of the decision sciences." It involves the use of mathematics, statistics, 'and computer science, with án emphasis on how to quantify things so as to make decisions.
c) Statistician (This class includes many specialist job titles). This can easily overlap with the above category - a person who can utilize data, and say what data are appropriate. Data abound in government, business and industry, and those who know how to extract uṣable, reliable information are very useful. Statistics plays a role in operations research; but many assignments involve primarily the application of statistical methodology. Statistically sound design of experiments, together with planned analysis of data in accordance with the experimental ${ }_{i}$ design, can be used to great advantage in improving products and processes, and so are of great importance to a variety of firms and agencies. More information about opportunities in statistics may be found in Part IV.
d) Classical Applied Mathematician. The phrase "applied mathematician" has traditionally meant someone with a differential equations and physics orientation. This is still a fundamental field in government and industry, which often uses computers. There is still a tremendous interest in solving equations of motion and those of steady state fields. In the last two decades the computer has made formerly impractical problems routinely solvable. Some of these computer solutions are being developed very effectively by engineers, partly because mathematicians have not been interested in such work. However, the engineer is usually interested in just one type of problem and will stay with any method which will give an answer to that problem. The mathematician acts more as a consultant, being interested in several methods and trying to find which problems àre best solved by each method. Part I gives more information about Classical Applied Mathematics and Engineering.

The mathematician in government or industry soon learns that colleagues are primarily interested in efficient answers, even if they are only approximate. The mathematician who learns this has taken a significant step forward.
e) Information Scientist (Many have job titles containing words like Control . Systers, Conimunications Systems, and Signal Processing). The mathematical roots and many of the main branches are the same as those of statistics, but for historical reasons these subjects were actively developed during the 1950's and 1960's independently of the main stream of what was then called statistics. Information scientists are concerned with problems involving informationbearing characteristics of signals, patterns, and observations, and their cont version from one form to another; storage, retrieval, and transmission ănd reception from one place to another. If any distinction is to be made between statistics and information sciences, the former is concerned more with after-the-fact analysis of relatively slow processes, such as interpretation of national economic data, whereas the latter are more concerned with the interpretation as they occur - of fast events, such as modulated radio waves.

Transforming speech into várious electrical signals suitable for transmissions over telephone cables, fm or am radio broadcasts, or digital transmission by satelite relay, and reconstruction of the voice at the receiver are applications of information science. Further applications are found in every part of a telecommunications system where a message is transformed from óne form to another or transmitted from one place to another. Other applications are found in information transmission, storage and retrieval systems like those used to maintain business records and accounts, automated libraries and "data banks," for example, electronic fund transfer systems, security cystems, 'real-time inventory \therefore and reservation systems, and real-time police, credit-service; and news-service data banks. Still other applications are found in search and pattern recognition, as in analysis of geophysical records to locate petroleum deposits or the organization of displays and communications in an air traffic control system. Further applications are found ${ }^{\text {® }}$ in automatic control, from the simple household thermostat or more complex aircraft autopilots, to highly sophisticated control systems for automated factories and space exploration vehicles.

Mathematical ideas from analysis, statistics, algebra, and other branches are essential in the information sciences. Practical applications - conceptual design of information-using systems, design and development of equipment, and system operation-always require some knowledge and understanding of engineering, the sciences, and the particular kind of operations involved. Probably more of today's information scientists were originally trained in electrical engineering than in any other branch of engineêring or science or mathematics. When looking for information scientists, most employers witt seek people trained in engineering or science and overlook mathematicians: However, there are numerous examples to show that an academic background in pure or applied mathematics or statistics is a sound foundation for a government, business or industrial career in information sciences.
f) Consultant. A mathematical consultant usually han established reputation for solving problems and carrying out research. If the client employs mathematicians, they may have formulated the, scope and çontent of a mathema-
tical investigation and identified the particular kind of mathematical talent and experience required to carry it forward. In such a case, the consultant reviews their work, advises them, and suggests methods of approach to be worked out in detail by the client's resident staff. In other cases, it is necessary that the consultant master the fundamentals of one or more fields of science, engineering, business or gọvernment operations or management in which complex quantitative issues susceptible to mathematical treatment can become urgent and economically important.

The consultant must recognize the client's objectives and nonmathematical constraints ánd produce results that do not violate them. Fees ranging from several hundred to one thousand dollars a day are common. Many consult only occasionally while pursuing full-time carcers as, say, university professors; others are in private practice, like lawyers and physicians; still others are members of consulting firms, sharing a practice with other mathematicians. or with a more diversified professional staff capable of undertaking total responsibility for interdisciplinary assignments; some are employed full-time by large corporations to serve as internal staff consultants.
g) Mathematician in a Non-mathematical Role. Quantitative fproblems that yield to rigorous logical thinking are not peculiar to mathematics, and a training in mathematics is a very good background with which to approach them. People whose academic training is in mathematics have been successful in many jobs traditionally thought of as belonging to other fields. These are too numerous to list, afili include many branches of engineering, physical and social science, finance and management, law, and medicine. The incidence of mathematicians in any one field is small, but the aggregate number of mathematicians thus occupied is large enough to constitute a professional opportunity not to be overlooked.
Not too many, years ago, a great many industries, businesses and government agencies hired mathematicians quite readily, and were glad to have any mathematician. In the last few years this situation has changed. A survey of industrial - mathematics departments (American Mathematical Monthly 81 (1974)) records the opinions of industry concerning Ph.D. mathematicians and their training, but the report is relevant to all mathematicians. A typical negative comment is ". . .the push towards 'near-term relevance' in our research programs has made it virtually impossible for us to afford the luxury of a topologist, an algebraist . .." A typical positive cömment is ". . .the discipline and logic which they have learned through their, training is a valuable part of their usefulness to the company." Government agencies often take a longer view and can afford more time to indoctrinate new employees, and their enthusiasm for mathematicallytrained personnell has not fallen as fast.
2. Working Conditions and Employment Opportunities in Business and Industry. The reader is advised to;read the article in the American Mathematical Monthly Vol 81 (1974) by R.E. Gaskell and M. Klamkin for a detailed list of comments. In general, mathematicians are considered professionals, and work in

```
32
```

a group often as though they were consultants to that group. A nice description is contained in the reference above. "The applied part consists mainly in hearing a client's description of his situation, plowing through his jargon, overcoming his tendency to start in the middle, digging out all the constraints that he has forgotten to mention, developing a model that takes account of enough detail to be realistic (but not so much as to become mathematically unwieldy), explaining it to the client in his language to determine if it is reasonable and relevant, solving whatever problems are suggested by the model, and explaining to the client, again in his language, how he can use the solution."

There is a general feeling now in industry that most mathematical training is too narrow. An obvious alternative to narrow specialization is to learn something about everything. For a mathematician in industry, this would be just as inadequate as narrow specialization. The móst promising solution to this dilemma is training which includes specialization in one or more areas appropriate to the tasks at hand, together with some command of all branches of mathematics at an elomentary level. To nonmathematician colleagues, the industrial mathematician is an emissary from the universe of mathematics, and he or she should be able to represent all of that universe. Thus, it is very useful for a mathematician looking for employment in industry to have had some courses in other fields-eco-; nomics, operations research, biophysics, computers, physics, engineering, or statistics. Mathematicians will be able to learn a great deal about the nonmathematical aspects of the industry from colleagues, whereas few colleagues will be available to enrich the mathematician's own mathematical background.

In general, the employment opportunities in business and industry are greater for candidates with the B.S. or M.S. degree than for those with Ph.D. The candi-, date with no graduate training may have to be satisfied with a job with little technical content. Whatever the candidate's educational level, the technical competence of the individual will soon diminish in a rapidly changing technological environment, unless an effort is made to continue the education process. Many employers offer excellent educational programs for obtaining an M.S. degree (in some cases, even a Ph.D.) or for keeping up to date without seeking a degree.

Salaries paid to mathematicians in business and industry are usually comparable to salaries paid to engineers and scientists, and most published salary survey data do not separate mathematics from other disciplines. One exception is 1981 National Survey of Compensation by Battelle Columbus Laboratories. It can be inferred from this report that the median starting salary in 1981 for a holder of a bachelor's degree in mathematics or statistics was about $\$ 21,000$ per annum, fờr a master's degree holder about $\$ 22,000$ s and for a doctor's degree holder about $\$ 30,000$. For those who received the first (bachelor's) degree in 1961, median salary figures are $\$ 39,000$ p.a. for those with no further degree, $\$ 40,000$ for those with a master's, and $\$ 43,000$ for those with a doctorate. This survey is based on a statistically balanced sample of over 96,000 scientists and engineers doing research and development, of whom over 65,000 are in industry, about 3,000 are
in educational institutions, and about 27,000 in other reseirch institutions and Federal laboratories. The sample ineluded about 4,500 whose highest degree is in - mathematics.
3. Working Conditions and Employment Opportunities in Government. The Federal and staté governments employ a number of mathematically trained people, generally as "applied mathematicians," at all levels of education. In the 1970 American Science Manpower report about 6% of the mathematicians surveyed worked for goverıment, but 57% of the statisticians and 9% of the computer scientists worked for Federal and local governments full-time, and these proportions appear to be rising. The employment of mathematically trained people comes largely in serving two main functions: both the local and

* Federal governments devote a significant amount of their resources to the collection and analysis of data; and the Federal government has a considerable research effort of its own in several fields, notably space, defense, agriculture, and the enviromment.
a) The Uses of Mathematics in Government. The mathematical work is invariably computational at the beginning levels of government work and particularly so for someone at the bachelor's or master's level. Typical problems involve solving algebraic or differential equations or analyzing statistical data. These problems are not generally mathematically sophisticated, but a sound grounding in mathematics is a great asset. A combination of mathematics and statistics or mathematics and computer science is a valuable asset. In fact, knowledge of how to use high speed computers is almost essential.
With some experience the mathematician generally becomes a departmentwide consultant. Many problems involving data analysis are problems trying to match data with imperfect mathematical models of physical, economic, or socio-logical systems. One must somehow perform the sometimes unhappy marriage between what can be obsèrved, what can be modeled mathematically, and what can be solved mathematically in finite time and finite resources. A mathematician who can learn to understand the modeling process in some applied area becomes very valuable and experiences tremendous challenges.
A number of government agdncies are highly involved in the physical sciences (e.g., the National Aeronautics and Space Administration and Department of Defense). Also; there are many engineering applications of mathematics such as the design, simulation, and occasionally construction of complicated structures. Efficient modeling of engineefing problems is a task calling for the assistance of many mathematicians at all professional levels.
The Federal government is responsible for the direct support of a significant amount of fundamental research, even in mathematics. A substantial portion of this support is through research grants to mathematicians throughout the country, either at universities or in private industry. Most of the "pure" research is funded by the National Sciehce Foundation, but other agencies, especially the Department of Defense and NASA, support considerable work with a high mathematical content. All together in the 1970's the Federal government typically
granted more than $\$ 100$ million per year to various institutions and individuals for work in pure and applied mathematies and allied subjects. This amount is not likely to increase, and will probably decrease if policies prevailing in 1982 are maintained. The recipients of these grants however, are not really considered as "working for the government." They are rather like consultants, hired for a short period for a certain task. The people involved in these grants are usually university professors, research associates, post-doctoral fellows, and graduate students working on their doctoral theses.
: In addition to the considerable support of mathematics through these outside research grants, the Federal government has a number of excellent research laboratories of its own. These labs have their own full-time staff of professional mathematicians and do research as competently as any university. It is not feasible to list all but we do mention, in particular, the U.S. Army Mathematics Research Center in Madison, Wisconsin, the Atomic Energy Commission's Oak Ridge National Laboratory in Tennessee, and the National Bureau of Standards in Washington, D.C., which have internationally known mathematicians on their staff. A great many of the research and development labs have independent research programs, where promising ideas can be explored. These ideas are not necessarily directly applicable to the lab's immediate purpose. The work here is in many ways comparable to that in industry.
b) Working Conditions and Salaries. A major difference between employment in industry and that in government is in the employment structure. Most government employees are in the Civil Service, a nationwide employment plan with a great deal of structure to it, with the coneomitant features of security and lack of flexibility. Someone with a bachelor's degree would typically find a position somewhere near the GS-5 level. (Civil Service grade level salaries are frequently revised, and current salary scales are readily available from public sources.) With a master's degree the starting level is usually GS-8 or higher, and with a.Ph.D., GS-11 or higher.

A 1972 NSF publication listed 2,446 mathematicians, 2,802 statisticiàns, 7,332 computer specialists, and 1,807 operations research analysts in the Federal government, and 1,839 mathematicians, 1,053 statisticians, 4,206 computer specialists and 602 operations research analysts in state and local government who answered a questionnaire sent out by NSF. The 1981 U.S. Department of Energy National Survey of Compensation Paid Scientists and Engineers in Research and Development Laboratories shows 18.1% of a total population of over half a million in Federal (Civil Service) and Contract Research (industry operated on behalf of the Federal government) establishments. The percentage of mathematicians has not been calculated separately from other scientists and engineers, but there is no reason to believe the proportion would be very different.

In general the professional conditions in government service are good. Advanced schooling is encouraged, frequently at government expense. Attendance at professional meetings is encouraged, and the government sponsors or cospon-
sors a number of professional meetings. Exchanges of scientists between laboratories is often possible. The Federal government has mathematical labs in most every state and in many overseas locations as well. Working for the Federal government gives one aecess to the vast Defense Documentation Center with its wealth of information. As with most jobs, a government job can be as exciting or as tedious as the individual makes it. However, research, per se, is probably on the decline in these jobs.

7
 PART IX: MATHEMATICS AS BACKGROUND FOR OTHER PROFESSIONS

An undergraduate degree in mathematics is excellent preparation for many careers not usually considered "mathematical." Why? The reasons stem both from the use of mathematics in other fields and from the nature of the study of mathematics. Mathematical techniques are being used to a large extent in increasingly many areas (resource exploration, data processing, corporate management, and pollution control, to name just a few). In some instances, knowledge of mathematics is more crucial than knowledge of specific subject matter. Moreover, non-technical professionals (managers, policy analysts, sales people) who work with technical personnel have an advantage if they speak the language -ie., if they know mathematical terminology and symbols. The nature of learning mathematics enters in three ways. First, it is usually easier to learn mathematics in college and pick up specifics of subject matter later than vice versa. Second, the mathematics student typically gets more practice solving problems than docs any other undergraduate major. Problem solving skills are valuable in many disciplines. Finally, mathematics is not an easy major. The student who succeeds in an undergraduate mathematics program has demonstrated both ability and the willingness to work hard. He or she is apt to learn more quickly on the job than is a graduate of a less demanding program.

1. Careers Requiring No Graduate Training

Sales and Management. These are lumped together since both primarily use the "ability to speak the language"' aspect of a mathematics background. College graduates with many different majors enter these fields. If the company is technologically oriented, the math major has an advantage over the liberal arts (and often over the business) major. For a career in management, you might supplement a mathematics major with three or four business courses.

Geophysics. As resources become scarce, exploration techniques become more sophisticated and accordingly more mathematical. Math majors with a minor in geology (or vice versa) are currently in great demand by oil companies.

Engineering. When the demand for engineers exceeds the supply, mathematics majors are recruited to fill the vacancies - they already know the mathematics and are receptive to on-the-job training. Even when supply equals demand, a good math major with a few engineering courses may have an advantage over a run-of-the-mill engineering graduate.

2. Graduate and Professional School Opportunities

Many graduate and professional schoolst-draw students from a wide variety of majors. Often a few courses outside the major are required for acceptance into these programs, so if you are interested in any of the areas discussed here, be sure to check graduate. school catalogues early enough to be able to include required courses in your undergraduate schedule.

Business Administration. Mathematics is a good pre-business major for many reasons: many modern business techmiques fre highly mathematical; most businesses today use, produce, or sell sophisticated techmology; and suecess in the competitive business word demands problem solving skills, hard work, and the ability to learn quidely. We quote from the article "What's needed to becone a company superstar," IBushess Week, September 15, 1980, " , . one combination. appears to be emerging ats the surest ticket to instant employment, a high salary, and a promising future. That is the combination of an undergraduate degree in engineering, math, or science, and a master's degree in business administration."

Government. Air and water pollution, resource depletion, the arms rate, complex budgets - these are just a few of the concerns of government that involve use of mathematical tools. And, of course, most of what was said above about business holds equally true for govermment. It is thus not surprising that, for example, 'the John F. Kennedy School of Government at Harvard actively recruits math majors for its programs.

Law. The lawyer in court must use the evidence available to prove that the defendant is innocent or guilty, just as the mathematics student must prove the conclusion of a theorem from the hypotheses given. Where else in the undergraduate curriculum does one acquire as much experience in "arguing a case?".

- Moreover, as mathematical techniques become more prevalent in government and business, they inevitably show up in legal proceedings. The lawyer with a knowledge of statistics, computers, or other mathematical topics has an edgeters over her or his colleague with a pure liberal arts background. With today's flood of lawyers, this edge can be especially important.
Meteorology, Oceanography, Wildlife Management. These are just a few of the "smaller" disciplines which have become highly mathematical and usually do not offer undergraduate degrees, in some cases, a minor in another field (e.g., biology for wildlife management) is advisable as preparation for a graduate program in once of these fields. A thorough study of graduate school catalogues for the areas that interest you is therefore particularly advisable.

PARI X: REFERENCES

Gieneral Career lnformation

1. Carcers in Mathematics, Ancrican Mathematical Society, P.O. Box 6248, Providence, RI '029.40. One copy, free.
2. Carecrs' in Statistics, American Statistical Association, 8ok, I.sh Si., NW, Wash(ington, D.C. 20KX)s.
3. Acthary, Careers, P.(). Box 135, I.argo, FL 335.40, 6.54 cach.
4. Mathematician, Careers, 1'.O. Box 135, Largo, III. 33540. 954.
5. Programmer, Careers, P.()..11ox 135, I.argo, FL 33540. 954.
6. Statistician, Carcers, P.O. Box 135, Largo, FLL 33540. 654.
7. Systems Amalyst, Carecrs, P.O. Box 135, I.argo, Ill. 33540.654.
8. Casmalty Actmary, Casualty Actuarial Socicty, 250 W. .dth St., New York. NY 10119.
9. Chromicle' Ocenpational Bricfs. Among varions briefs of interest are those relating to Programmers, Mathematicians and Techmicians, Statisticianis, Statistical Clerks, and Actmaries. Chronicle Guidance Publications, Inci., Moravia, NY 13118. \$2 per 4-page brief. (Complete list of titles free on request:)

- 10, Stntistics; A Guide to the Unknown, J,M. Tanur, Ed, 2nd Edition, Molden-Day.
- Inc., 4432 Telegraph Avenue, Oakland. CA 94609).

11. Ciureer Mathematics: Industry and the Trudes, Houghton Mifilin Co., One Beacon St., Boston, MA 02108. \$6.(9).
12. .Science Éducation for Yon?, 1975, 20 pgs. National Science Teachers Association, 1742 Connecticut Ave., NW, Washington, D.C. 20009. \$2. Prepaid orders over \therefore. $\$ 15$, waive $\$ 2$ postage \& handling fec.
13. Carecrs in Operations Research and the Edncational Programs in Operations Research/Management Science, Operations Research Society of America, 428 East Preston St., laaltimore, MD 21202. Up to 3 copies, free.

14: Carcers in Applied Mathematics, Society for Industrial and Applied Mathematics, 117 Şouth 17 th St., Philadelphiia, PA 19103 . One copy, free.
15. Profiles in Appliced Mathematics, Society for Industrial and Applied Mathematics, 117 South 17th Strect. Philadelphia, PA 19103. One copy, frec.
16. Actuarial Profession, Society of Actuarics, 208 S. LaSalle St., Chicago, IL 60004.254.
17. From Achuarius to Actmary, the Growth of a Diynamic Profession in Canada and the United States. Society of Actuaries, 208 S. LaSalle Street, Chicago, IL 60604. \$2.
18. Mathematics. The Student, Subject, and Careers Series, Guidance Center, Faculty of Education, University of Toronto, 252 Bloor St. W., Ontario, M5S 2 Y3 CANADA. $\$ 3.90$.
19. Occupational Information Monograph-Mathematician, Guidance Center, , Faculty of Education, University of Toronto, 252 Bloor St. W., Ontario M5S 2 Y 3 CANADA."\$1.
20. Issues of the Notices of the American Mathematical Society contain the following articles which may be of interest:
":Comments on Panel Discussion: Nonacademic. Employment of Ph.D.'s," 155(1974)206-211.
\because Nonacademic Employment of Ph.D.'s in the Mathematical Sciences." Wendell H. Fleming, 161(1975)152-155.
"Case Studies - Some Mathematicians with Nonacademic Employment," 157(1974) 346-348; 160(1975)100-102; 162(1957)181-184; 163(1975)241-244; 165(1975)355-357; - 184(1978) $115: 118$.
"Current Trends in Graduate Education in Ph:D. Granting Mathematics Departments," Wendell H. Fleming, 168(1976)109-113.
"Comments on Panel Discussion: The' Changing Role of the Master's Degree," 170(1976)206-209.
"Employers.- Viewpoint on Nonacademic Employment-A Panel Discussion," 185(1978)184,188.
"Employment of Mathematical Ściences Doctorates," Wendell H. Fleming, 184(1978)99-104.
21. Issues of the American Mathematical Monthly contain the following articles which may be of interest:
"Computer science and its relation to mathematics," Donald E. Knuth, 81(1974) 323-343.
"The industrial mathematicia ${ }^{\text {views his profession-a report of the committee on }}$ corporate members," R.E. Gaskell and M.S. Klamkin, 81(1974)699-716.
"Mathematicians in operations research consulting," Daniel H: Wagner, 82(1975) 895-904.
"Mathematics and Sex," John Ernest, 83(1976)595-614.
"Mathematicians in the practice of operations research,"' Gordon Raisbeck; 83(1976) . 681-701.

Recommended Study

See also \#13.
22. Professional Training in Mathematics with a Selected List of Available Scholarships and Stipends in Mathematics, American Mathematical Society, P.O. Box 6248, Providence, RI 02940. \$2.
23. Recommendations for Study, Casualty Actuarial Society, 250 W. 34th St., New York, NY 10119.
24. Preliminary Actuarial Examinations, Society of Actuaries, 208 S. LaSalle St,, Chicago, IL 60604.

Support for Study

See also \#22.
Ar
25. Assistantships and Fellowships in the Mathematical Sciences, Notices of the American Mathematical Society, (published every December), American Mathematica! , Society, P.O. Box 6248, Providence, RI 02940. $\$ 3$.

Women in Mathematics and Science

26. Women in Physics, American Physical Society, 335 E. 45th St., New York, NY 10017. Qne copy, free.
27. Careets for Women in Mathematics, Association for Women in Mathematics, 422 Founders, Wellesley College, Wellesley, MA 02181. (Self-addressed, stamped envelope must accompany request. One copy, free; over ten copies, $10 ¢$ each.)
28. Science Career Exploration for Women, 1978, 77 pgs. For science teachers, counselors, and others who work with young women. Contains activities modules designed to assist Women students in exploring science related professional careers. National Science Teachers Association, 1742 Connecticut Ave, NW, Washington, D.C. 20009. \$5. Prepaid orders over $\$ 15$, waive $\$ 2$ postage \& handling fee.
29. A Profile of the Woman Engineer, Society of Women Engineers, 345 E .47 th St:, New York; NY 10017.

40

Advice for the Employment Seeker

30. Seeking Employment in the Mathematical Sciences, American Mathematical Society, P.O. Box 6248, Providence, RI 02940. $\$ 1$ for first copy; $\$ 1$ for each additional 2 copies.

See also \#20.
See also \#21.

Other Sources

31. Womeñ Scientists Roster, 1979, 143 pgs. A listing of over 1,300 women in science related fields who have volunteered to address students and other groups interested in science careers fromª new perspective. National Science Teachers Association, 1742 Connecticut Ave., NW, Washington, D.C. 20009. $\$ 5$. Prepaid orders over $\$ 15$, waive $\$ 2$ postage \& handling fee.
32. Science and Engineering Careers-A Bibliography (1974), Scientific Manpower Commission, 1776 Massachusetts Ave., NW, Washington, D.C. 20036. \$2.
33. National Survey of Compensation for Paid Scientists and Engineers engaged in Research \& Developmental Activities-1981 edition. (\#061:000-00569-2) Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. \$9:
34. Employment Outlook for Education and Related Occupations, (BLS Bulletin 2200-9) Superintendent of Documents, U.S. Government Printing Office, Washington, D.C: 20402. $\$ 2.25$.
35. Employment Outlook for Computer and Mathematics Related Occupations, (BLS Bulletin 2200-4) Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. \$2.25.

For further information we list the addresses of professional societies referred to in this pamphlet:

1. American Mathematical Society, P.O. Box 6248, Providènce, RI 02940.
2. American Federation of Information Processing Societies, 1815 N. Lỵn Strẹt, Suite 800, Arlington, VA 22209.
3. American Physical Society, 335 E. 45th̄ St., New York, NY 10017.
4. American Statistical Association, 806 15th St., N.W., Washington, D.C. 20005.
5. Association for Computing Machinery, 11 West 42nd St, New York, NY 10036
.6. Association for Women in Mathèmatics, 422 Founders, Wellesley College, Wellesley, MA 02181.
f
6. Biometric Society, 806 Fifteenth St., N.W., Washington, D.C. 20005.
7. Casualty Actuarial Society, 250 W. 34th St., New York, NY 10119.
8. Instifute of Mathematical Statistics, 3401 Investment Boulevard, Suite \#6, Hayward, CA 94545.
9. Mathematical Association of America, 1529 Eighteenth St., N.W., Washington, D.C. 20036.
10. National Council of Teachers of Mathematics, 1906 Association Drive, Reston, VA 22091.
11. National Science Teachers Association, 1742 Connecticut Ave., N.W., Washington, D.C. 20009:
12. Opeerations Research Society of America, 428 East Preston St., Baltimore, MD 21202.
13. Scientific Manpower Commission, 1776 Massachusetts Ave., N.W., Washington, D.C. 20036.
14. Society for Industrial and Applied Mathematics, 117 South 17th St., Philadelphia, PA 19103.
15. Society of Actuaries, 208 S. LaSalle St., Chicago, IL 60604.
16. Society of Women Engineers, 345 E. 47 th St., New York, NY 10017. , \because
17. The Institute of Management Sciences (TIMS), 146 Westminster St., Providence, RI 02903.

[^0]: , *National Survey of Salaries and Wages in Public Schools, Part 2, Educational Research Service,

